细胞内广泛存在着由蛋白质和核酸相互作用而形成的液滴状无膜细胞器,与有膜细胞器相比,这些无膜细胞器源于液-液相分离,具有亚稳定的特点,且参与细胞内的代谢、物质分配等重要活动,对于生物体的生理和病理过程有重要的意义。目前,无膜细胞器如何响应细胞内/外部环境变化的机制尚不清楚。
在国家自然科学基金委和科学院的大力支持下,化学所高分子物理与化学实验室乔燕课题组开展了原始细胞模型和类细胞行为的研究,取得了系列研究进展(Adv. Sci. 2021, 2101187; ChemSystemsChem 2020, 2, e2000044; Angew. Chem. Int. Ed. 2019, 58, 17758)。
最近,该研究团队通过氨基酸衍生物和多糖高分子的液-液相分离制备了具有光和pH双重响应的凝聚液滴。在此基础上,利用蛋白质微囊的选择透过性仿生重构该凝聚液滴,构建了具有“细胞器”的多级次原始细胞模型。这些无膜细胞器可以富集蛋白、核酸等生物分子,且能够对pH、光及信号分子产生响应,实现仿生细胞器的解体和再生,并伴随着生物大分子等物质的富集和释放,实现了对酶催化反应速率的调控。在此基础上,他们基于亚细胞器多重信号响应的特性,在高级次原始细胞模型内构建了复杂的酶反应网络,通过物理信号(光)和生物化学反应(酶反应)协同诱导亚细胞器的形成与解体,具有布尔逻辑门(或非门和与非门)的特征,成功模拟细胞内的信号传递及用于化学计算。相关研究结果发表于Science Advances期刊上(Sci. Adv. 2021, 7, eabf9000),并被Nature期刊(Nature 2021, 594, 152)作为研究亮点报道。
图 构建多级次具有细胞器的原始细胞模型模拟细胞信号系统
高分子物理与化学实验室
2021年7月21日